HTML

Linkblog

Elindult az új részecskegyorsító (LHC)

2008.09.13. 10:51 :: peiszisz

Large Hadron Collider ring, magyarul nagy hadronütköztető gyűrű, röviden LHC a CERN frissen átadott részecskegyorsítója és ütköztetőgyűrűje, amely a 2000-ben leállított LEP 27 km kerületű alagútját használja fel. Több előgyorsító fokozat után ebben a gyorsítóban fognak végleges 7 TeV‑es energiájukra gyorsulni a protonok (illetve időszakonként ólomionok) mindkét körüljárási irányban. Ezután a protonnyalábok több órán keresztül keringenek majd egymással szemben, és a gyorsító kerületén található detektorok közepén az egymással szemben keringő protonnyalábok pályáját úgy módosítják majd, hogy ott proton–proton ütközések fognak történni. A sikeres nyalábtesztek után. 2008 szeptember 10-én kezdte meg a működését Az ütköző részecskék energiáját az elindítás után fokozatosan növelik, s amikor eléri a végleges, 7 TeV energiát, ez lesz a legnagyobb energiájú gyorsító.

Működése során nagyjából 80 állam 7000 fizikusa fog hozzáférni az LHC-hez. A fizikusok azt remélik, hogy közelebb jutnak a következő kérdések megválaszolásához az LHC kísérleteivel:

  • Sérül-e a népszerű Higgs-bozon elmélet, amely magyarázattal szolgálhat az elemi részecskék tömegére? Ha nem, hányféle Higgs-bozon van, és mekkorák a tömegeik?
  • Továbbra is összhangban lesz a barionok még pontosabban mért tömege a részecskefizika standard modelljével?
  • Léteznek-e a jelenleg ismert részecskéknek szuperszimmetrikus („SUSY”) partnerei?
  • Miért van több anyag, mint antianyag?
  • Léteznek-e extra dimenziók, ahogy a húrelmélet ihlette modellek jósolják, és „látjuk”-e őket?
  • Milyen természetű az az anyag, amely a világegyetem tömegének 96%‑át alkotja, és a jelenlegi csillagászati megfigyelések számára elérhetetlenek (sötét anyag, sötét energia)?
  • A gravitáció miért gyengébb nagyságrendekkel, mint a másik három alapvető kölcsönhatás?

Szólj hozzá!

A sötét energia

2008.07.12. 17:06 :: peiszisz

 A kozmológiában a sötét energia az a feltételezett energiaforma, mely az egész világegyetemben jelen van, és erős negatív nyomást fejt ki. Az általános relativitáselmélet szerint a negatív nyomás nagy távolságokon a gravitációs vonzást semlegesíti. Ez jelenleg a legelfogadottabb elmélet annak a megfigyelésnek a magyarázatára, hogy a világegyetem gyorsulva tágul.

Két lehetőséget ismerünk a sötét energia magyarázatára. Az egyik a kozmológiai állandó, egy konstans energiasűrűség, amely egyenletesen tölti ki a teret, a másik a kvintesszencia, egy dinamikus erőtér, melynek az energiája térben és időben változhat. A kettő közötti különbségtételhez nagyon pontosan kell mérni a világegyetem tágulását, hogy megértsük, hogyan változik a tágulás sebessége az időben.

Ha a kozmológia standard elméletéhez hozzáadjuk a kozmológiai konstanst, akkor a Lambda-CDM modellhez jutunk. Ez a modell nagyon jól egyezik a csillagászati megfigyelésekkel.

A sötét energia kifejezés Michael Turner kozmológustól származik.
Az 1990-es évek végén az Ia típusú szupernóvák megfigyeléséből arra következtettek, hogy a világegyetem tágulása gyorsul. Az elmúlt pár évben ezeket a megfigyeléseket különböző források is megerősítették: a mikrohullámú kozmikus háttérsugárzás, a gravitációs lencsék, a világegyetem kora, a ősrobbanás során fellépő nukleoszintézis (atommagkialakulás), a világegyetem nagy skálájú szerkezete, a Hubble-állandó mérései, valamint a szupernóvák pontosított mérései.

Az Ia típusú szupernóvák szolgáltatják a legközvetlenebb bizonyítékot a sötét energiára. A távolodó égitestek sebességét a színképvonalaik vöröseltolódásából meghatározhatjuk. Egy égitest Földtől való távolságának meghatározása a csillagászat egyik legnehezebb feladata. Standard gyertyákat kell találni: olyan égitesteket, melyeknek fényessége ismert, így a kérdéses égitest fényességéből a távolsága meghatározható. Standard gyertyák nélkül a Hubble-törvény vöröseltolódás-távolság kapcsolata nem mérhető. Az Ia típusú szupernóvák a legjobb standard gyertyák a kozmológiai megfigyelések számára, mert nagyon fényesek, és csak akkor robbannak fel, ha egy öreg fehér törpe csillag eléri az elméletileg pontosan meghatározott Chandrasekhar-határt. Ha a szupernóvák sebességét felrajzoljuk a távolságuk függvényében, akkor megkaphatjuk, hogyan változott a tágulás mértéke a világegyetem történetében. Ezek a megfigyelések azt mutatják, hogy a világegyetem tágulása nem lassul, ahogy az egy olyan univerzumtól elvárható lenne, amelyben az anyag van túlsúlyban, hanem rejtélyes módon gyorsulva tágul. Ezt a megfigyelést egyfajta negatív nyomású energia feltételezésével lehet magyarázni, melyet sötét energiának neveztek el.

A sötét energia létezése bármelyik formájában megoldaná az úgynevezett „hiányzó tömeg” problémát is. A ősrobbanáskor lezajlott nukleoszintézis elmélete magyarázza meg, hogy milyen módon és milyen arányban alakultak ki a könnyű elemek, mint a hélium, deutérium és a lítium a korai univerzumban. A kozmosz nagy skálájú szerkezetének elmélete magyarázza meg, hogy milyen módon alakult ki a világegyetem szerkezete, a csillagok, kvazárok, galaxisok és a galaxishalmazok. Mindkét elmélet azt sugallja, hogy a barionos anyag és a hideg sötét anyag csak a kritikus sűrűség mintegy 30%-a. A kritikus sűrűség az a sűrűség, melynél a világegyetem alakja sík (ez nem azt jelenti, hogy két dimenziós, hanem, hogy görbülete nulla). A mikrohullámú kozmikus háttérsugárzás WMAP műholdak általi mérése szerint a világegyetem nagyon közel van a síkhoz. Eszerint tehát a fennmaradó 70%-ot valamilyen energiának szolgáltatnia kell.

 

Szólj hozzá!

String Theory - Húr elmélet

2008.05.13. 13:29 :: peiszisz

Az alábbi videók egy filmet alkotnak,sajnos egyben nem találtam meg és angol hangal van, de ettől függetlenül még mindenkinek ajánlom! Nagyon jól összefoglalja a jelenlegi tudásunkat a fizikáról és a világegyetemről és arról, hogy mennyiben különbözik a kvantummechanika világa az általunk férzékelt világtól!
(A címek alatti videók átcsusznak egy kicsit egymásba,de sorban van!)


Einstein álma
A mindenség elmélete, Newton és a gravitáció

Szólj hozzá!

A magfúzió és hasznosítása

2008.04.20. 12:23 :: peiszisz

A magfúzió olyan magreakció, ami során két kisebb atommag egyesül egy nagyobbat eredményezve. Ez a folyamat lehet exoterm vagy endoterm, a kiinduló magok atomtömegétől függően. Éppen ezért próbálják laboratoriumi körülmények között létrehozni, hiszen egy fúzió során hatalmas mennyiségű energia szabadul fel, az atomerőmüvek teljesítményének a sokszorosát tudná termelni.
Az elemek közül a vas és a nikkel a legstabilabbak (ők rendelkeznek a legnagyobb fajlagos kötési energiával). Ha a fúzióban résztvevő elemek könnyebbek a vasnál, akkor a folyamat energiafölszabadulással jár.

Ez a folyamat játszódik le a csillagokban és a hidrogénbomba robbanásakor. A vasnál nehezebb elemek fúziója (endoterm voltukból kifolyólag) szélsőséges feltételeket követel, mint például a szupernóva robbanás. A természetben található elemek mind csillagokban és szupernóva robbanás közben jöttek létre.

Az atommagot az erős kölcsönhatás tartja össze, ami nukleonok között hat, nagyon rövid távolságon (10-15 m). Az atommagok nagyobb távolságokon viszont taszítják egymást, mert töltésük pozitív. Így kialakul egy potenciálgát, ami a D-T (deutérium-trícium) esetében 0,1 MeV. Hogy a fúzió megtörténjen, az atommagoknak le kell győzniük a potenciálgátat. Ezt megtehetik a plazmában, amit termonukleáris fúziónak neveznek, és a későbbiekben is erről lesz szó.

Ha átszámoljuk a 0,1 MeV-ot hőmérsékletre, akkor 109 kelvint kapunk, ami nagyon magas hőmérséklet (főleg, ha tudjuk, hogy egyik fém se nagyon bírja a 3000 kelvinnél magasabb hőmérsékletet és éppen ez a legnagyobb próbláma egy fúziós erőműnél). Ezen segít két effektus:

  1. a Maxwell-féle sebességeloszlás szerint a sokkal alacsonyabb hőmérsékletű plazmában is vannak nagy megfelelő energiájú atomok (csak kevés)
  2. az alagúteffektus megengedi, hogy a kisebb energiájú atommagok is átjussanak a potenciálgáton

Ez a két effektus sem csökkenti a kívánt hőmérsékletet emberibb értékekre. Ezért a plazmát össze kell nyomni, hogy a hőmérséklete megnőjön. Ezt három módon lehet elérni:

  1. gravitációs – amikor a gáz a saját súlya alatt nyomódik össze. Ehhez azonban nagy mennyiségű gáz kell, így ez csak a csillagokban jelentkezik
  2. mágneses – a plazmában szabad pozitív és negatív ionok találhatók, tehát hatnak rá a mágneses erők. Ezt használják ki a tokamak és a stellator berendezések
  3. inerciális – ha hirtelen sok energiát közlünk a gázzal (pl. lézer segítségével), akkor a gáznak nem lesz ideje kitágulni, így a hőmérséklete fog emelkedni a kívánt érték fölé.

Ahhoz, hogy egy fúziós reakció energiatermelés szempontjából érdekes legyen, a következő feltételeket kell teljesítenie:

  • legyen exoterm
  • kicsi legyen a protonok száma (kevésbé taszítják egymást az atommagok) – tehát a legkönnyebb elemek között kell keresni
  • két kiindulási anyag legyen
  • két reakciótermék legyen (az energia- és impulzusmegmaradás miatt)
Jelenlegi kisírletek a franciaországbeli ITER kutató intézetben zajlanak.

Szólj hozzá!

Aerogél

2008.04.09. 15:56 :: peiszisz

Az aerogél nagyon alacsony sűrűségű szilárd anyag, amely gélből származik, a folyékony komponenst gáznemű anyaggal cserélve ki. Az eddig ismert legalacsonyabb sűrűségű szilárd anyagnak tartják, amely számos különleges fizikai tulajdonsággal bír (például szigetelőként). Áttetsző volta és belső fénytörése miatt angolul nevezik fagyott füstnek (frozen smoke), szilárd füstnek (solid smoke) és kék füstnek (blue smoke) is, ezek a nevek magyar nyelvben nem terjedtek el (maga az aerogél is alig ismert). Bár külsőre tényleg olyan, mintha kék füstből vágtak volna ki egy darabot, érintésre a polisztirolhoz hasonlít.

Először Steven Kistler készített aerogélt 1931-ben, miután fogadott Charles Learneddel, hogy képes a zselében a folyadékot gázzal kicserélni, anélkül hogy a zselé összeroskadna. Az első ilyen gélek szilikongélek voltak. Azóta bebizonyosodott, hogy aerogélt számos különböző anyagból lehet készíteni. Már Kirstler a szilikonon kívül alumíniummal, krómmal és ónnal is kísérletezett.

Amikor megérintik, az aerogél a könnyű, de szilárd hab érzetét kelti. Neve ellenére száraz és fizikai tulajdonságai teljesen elütnek a gélekétől. Könnyű nyomás nem hagy rajta nyomot, erős nyomás azonban maradandó mélyedést képezhet rajta. Nagyon erős nyomásra struktúrája radikálisan reagál és az aerogél üvegként törik darabokra.

Ez utóbbi tulajdonsága ellenére az aerogél strukturálisan rendkívül erős és saját súlyának kétezerszeresét is képes megtartani. Ez dendritikus mikrostruktúrájának köszönhető, amelyben a 2-5 nanométer nagyságú gyűrű alakú részecskék csomókba tömörülnek, nagyon porózus, majdnem fraktális szerkezetet létrehozva, amelynek pórusai 100 nanométernél kisebbek.


Az aerogél változatos feladatokra alkalmazható. Elterjedten használják őrlemény formájában nagy méretű tetőablakok és átlátszó épületelemek hőszigeteléséhez. Nagy energiájú lézerek elnyeletéséhez is használható.

A nanostruktúra miatt tényleges felülete óriási, így katalizátorok hordozójaként és elnyelető anyagként is alkalmazható. Használják kozmetikumok és festékek sűrítőanyagaként.

2000 körül állítottak elő hajlékony aerogélt, mikor szálakat is kevertek az anyagba.

Így alkalmazási területei még szélesebbek.
Az egyik ismertebb felhasználása, amikor a NASA műholdon kilőve csillagközi port gyűjtött be segítségével.

A szén alapú aerogél jól használható szuperkondenzátorok előállításához. Az aerogél nagy felülete miatt az ilyen kondenzátor 2000-5000-szer kisebb lehet a hagyományosnál.
A Dunlop cég teniszütők belső merevítéséhez alkalmazza.


11 komment

süti beállítások módosítása